Сердечная мышечная ткань фото

Сердечная мышечная ткань фото

Данная тема интересна детям, учащимся седьмых классов, и взрослым, занимающимся биологией на любительском уровне. Для ее понимания надо освежить школьную информацию и на практике попробовать рассмотреть мышечную ткань под микроскопом . Микроскопирование гистологических препаратов проводится в проходящем освещении с задействованием нижнего галогенного или светодиодного осветителя. В настоящей статье мы выложим фотоснимки, которые наглядно покажут, что может увидеть наблюдатель в лабораторных или домашних условиях.

Мышечная ткань — это упругая и эластичная основа опорно-двигательного аппарата, обеспечивающая подвижность организма. Она образует мышцы, необходимые для выполнения простейших и сложных физических действий, команда на исполнение которых посылается нервным импульсом. Классификация определяет несколько разновидностей, объединенных одним общим свойством – способностью сокращаться.

Бывает следующих видов:

  • Гладкая. Состоит из клеток, называемых миоцитами. Их отличительной особенностью является вытянутая форма, напоминающая веретено, и достаточно однородная внутренняя среда (цитоплазма). Включена в состав кровеносных сосудов и органов. Процесс сокращения и расслабления медленный. Движение не зависит от человеческой воли, то есть оно бессознательное.
  • Поперечно-полосатая скелетная. Представлена многоядерными миофибриллами нитевидной структуры. Может управляться произвольно, т.е. в зависимости от намерения человека. Организует мускулатуру костного скелета, воронкообразного канала глотки, языка, а также участвует в повороте глаз.
  • Поперечнополосатая сердечная, состоящая из кардиомиоцитов, цилиндрических клеток сердца. Они имеют характерные органеллы: ядро, лизосомы, митохондрии.

Для наблюдения мышечной ткани под микроскопом создается микропрепарат. На первом этапе взятый биологический материал, обернутый ватой, фиксируется путем долговременного замачивания в формалине — до 48 часов. Для этих целей может использоваться стеклянная посуда, например, банка с широким горлышком. Затем осуществляется заморозка, нарезка на куски малой ширины с использованием санного микротома, и окраска в гематоксилине и эозине. Подготовленные кусочки ткани кладутся на предметное стекло, пипеткой добавляется одна капля бесцветной пихтовой смолы, накрываются покровным стеклышком.

Для контрастирования в темном поле микроскоп должен быть оборудован темнопольным конденсором, но по умолчанию в учебных и медицинских моделях в базовой комплектации он отсутствует, и исследования проводятся в светлом. Визуализация может быть оптической или цифровой — через видеоокуляр. В этом случае изображение транслируется на экран ноутбука или персонального компьютера. Исследователь может зафиксировать результаты просмотра в фотографиях, на которых помимо образа объекта наносятся линейные и уголовные размеры участков, представляющих наибольший интерес.

Рекомендуются следующие характеристики прибора (не меньше):

  • Увеличение: 40-1000 крат;
  • Револьвер на 4 ахроматических или план-ахроматических объектива 4x, 10x, 40x, иммерсионный 100x;
  • Диаметр окулярной трубки не менее 23,2 мм.;
  • Широкопольный окуляр WF10 (или два парных, если насадка бинокулярная);
  • Наличие винта точной фокусировки с шагом 0,002 миллиметра.

Этим требованиям удовлетворяют, к примеру: Levenhuk 320, Микромед 1 вар. 1-20, Биомед 3.

Мышечная ткань сердца, или миокард, является типом мышечной ткани, которая формирует сердце. Эта мышечная ткань сокращается непроизвольно, и отвечает за то, чтобы сердце качало кровь по всему телу.

Что такое мышечная ткань сердца?

Мышца — это волокнистая ткань, которая сокращаясь вызывает движение. В организме три типа мышечной ткани: скелетная, гладкая и сердечная. Сердечная мышца высокоорганизована и содержит много типов клеток, включая фибробласты, клетки гладких мышц и кардиомиоциты. Эти клетки выполняют высоко скоординированные действия, поддерживающие работу сердца и циркуляцию крови по всему телу.

В отличие от скелетных мышц, которые присутствуют в руках и ногах, сокращение ткани сердечной мышцы является непроизвольным. Это означает, что это происходит автоматически, и человек не может их контролировать.

Как работает мышечная ткань сердца?

Сердце содержит специализированные типы сердечной ткани, содержащие клетки «кардиостимулятора». Они сокращаются и расширяются в ответ на электрические импульсы от нервной системы. Клетки кардиостимулятора генерируют электрические импульсы или потенциалы действия, которые заставляют клетки сердечной мышцы сокращаться и расслабляться. Клетки кардиостимулятора контролируют частоту сердечных сокращений и определяют, как быстро сердце качает кровь.

Ткань сердечной мышцы приобретает силу благодаря взаимосвязанным клеткам сердечной мышцы или волокнам. Большинство клеток сердечной мышцы содержат одно ядро, но некоторые имеют два. В ядре находится весь генетический материал клетки. Клетки сердечной мышцы также содержат митохондрии, которые называют «электростанциями клеток». Эти органеллы преобразуют кислород и глюкозу в энергию в форме аденозинтрифосфата (АТФ).

Читайте также:  Можно ли принимать семя льна целиком

Клетки сердечной мышцы под микроскопом выглядят полосатыми. Эти полосы возникают вследствие чередующихся нитей, которые содержат белки миозина и актина. Темные полосы указывают на толстые нити, которые содержат белки миозина. Тонкие, более легкие нити содержат актин. Когда клетка сердечной мышцы сокращается, миозиновая нить притягивает актиновые нити друг к другу, что приводит к сокращению клетки. Ячейка использует АТФ для питания этого сокращения. Одна нить миозина соединяется с двумя актиновыми нитями с каждой стороны. Это формирует единое целое мышечной ткани, называемое саркомером. Интеркалированные диски соединяют клетки сердечной мышцы. Разрывные соединения внутри интеркалированных дисков передают электрические импульсы от одной клетки сердечной мышцы к другой. Десмосомы — это другие структуры, присутствующие в интеркалированных дисках. Они помогают скреплять волокна сердечной мышцы.

Кардиомиопатия

Существуют заболевания, которые поражают ткани сердечной мышцы и нарушают способность сердца качать кровь или нормально расслабляться. К ним относится кардиомиопатия. Некоторые симптомы кардиомиопатии включают:

  • затрудненное дыхание или одышку;
  • усталость;
  • отек ног, лодыжек и ступней;
  • воспаление в области живота или шеи;
  • аритмию;
  • шумы в сердце;
  • головокружение.

Факторы, которые могут увеличить риск развития кардиомиопатии:

  • сахарный диабет;
  • заболевание щитовидной железы;
  • ишемическая болезнь сердца;
  • инфаркт;
  • высокое кровяное давление;
  • вирусные инфекции, которые поражают сердечную мышцу;
  • клапанная болезнь сердца;
  • чрезмерное употребление алкоголя;
  • семейная история кардиомиопатии.

Сердечный приступ вследствие закупорки артерии может остановить кровоснабжение в определенных областях сердца. В конце концов, сердечная мышечная ткань в этих областях начнет умирать. Гибель сердечной мышечной ткани может также произойти, когда потребность сердца в кислороде превышает предложение кислорода. Это вызывает выброс сердечных белков, таких как тропонин, в кровоток.

Некоторые разновидности кардиомиопатии

  • Дилатационная кардиомиопатия вызывает растяжение сердечной мышечной ткани левого желудочка и расширение камер сердца.
  • Гипертрофическая кардиомиопатия (ГКМ) — это генетическое состояние, при котором кардиомиоциты расположены не скоординированно, а дезорганизованы. ГКМ может прерывать кровоток из желудочков, вызывать аритмию (аномальные электрические ритмы) или приводить к застойной сердечной недостаточности.
  • Рестриктивная кардиомиопатия возникает, когда стенки желудочков становятся жесткими. Если это происходит, желудочки не могут расслабиться, чтобы наполниться достаточным количеством крови.
  • Аритмогенная дисплазия правого желудочка — эта редкая форма кардиомиопатии вызвана жировой инфильтрацией ткани сердечной мышцы в правом желудочке.
  • Транстиретин амилоидная кардиомиопатия развивается, когда амилоидные белки накапливаются и образуют отложения в стенках левого желудочка. Отложения амилоида вызывают усиление стенок желудочка, что препятствует наполнению желудочка кровью и снижает его способность откачивать кровь из сердца.

Советы по сохранению здоровой ткани сердечной мышцы

Регулярные занятия аэробикой могут укрепить сердечную мышечную ткань и сохранить здоровье сердца и легких. Аэробная деятельность включает в себя движение больших скелетных мышц, что заставляет человека дышать быстрее и учащать сердцебиение. Выполнение этих видов деятельности позволяет тренировать сердце. Некоторые примеры аэробных упражнений включают в себя:

  • бег трусцой;
  • ходьбу;
  • катание на велосипеде;
  • плавание;
  • прыжки со скакалкой;
  • танцы;
  • поднимание по лестнице.

Врачи дают следующие рекомендации по физической активности:

  1. Дети в возрасте от 6 до 17 лет должны ежедневно выполнять 60 минут физической активности от умеренной до высокой интенсивности.
  2. Взрослым старше 18 лет следует выполнять 150 минут аэробных упражнений средней интенсивности или 75 минут высокой интенсивности каждую неделю.
  3. Беременные женщины должны выполнять аэробные упражнения средней интенсивности не менее 150 минут в неделю.
  4. Взрослые с хроническими заболеваниями или инвалидностью могут заменить аэробные упражнения двумя тренировками в неделю для укрепления мышц.
  5. Регулярные занятия аэробикой могут укрепить ткани сердечной мышцы и снизить риск сердечного приступа, инсульта и других сердечно-сосудистых заболеваний.

Приглашаем подписаться на наш канал в Яндекс Дзен

или Пневмапсихосоматология человека

Русско-англо-русская энциклопедия, 18-е изд., 2015

Сердечная мышечная ткань — это ткань, состоящая из двух главных типов клеток — кардиомиоцитов.
(а) Обычные миоциты во многом схожие с миоцитами скелетной мышечной ткани. Они образуют мышцы сердца: мышцу предсердий и мышцу желудочков.
(б) Специальные клетки, обладающие свойством ритмической автоматии и проводимости возбуждения. Эти клетки имеют мало общего с типичными миоцитами, поскольку содержат незначительное число сократительных элементов. Из них образованы возбудительная (пейсмекер) и проводящая система сердца. Это эндогенный регулятор сердца, обеспечивающий автоматическое ритмическое самовозбуждение и его быстрое проведение по сердцу.
При микроскопии с небольшим увеличением видно, что сердечная мышечная ткань представляет собой единую сеть, состоящую из высокоорганизованных сильно ветвящихся и воссоединяющихся вновь мышечных клеток. Эти клетки длиной

Читайте также:  Анастомоз кишечника бок в бок

110 мкм и шириной

15 мкм связаны друг с другом по преимуществу из конца в конец (см. рис. типы мышечных тканей: электрические и механические свойства) особыми соединениями — вставочными дисками.

Схема. Мышца желудочка.
Цитировано: Eckert R., Muscle and Movement, In: Eckert R., Randall D., Augustin G. Animal Physiology. Mechanisms and adaptations. Third edition, Chapter 10, New York. Перевод: Эккерт Р., Рэнделл Д., Огастин Дж., Физиология животных, Механизмы и адаптация. М., Мир, 1991.

Важными компонентами каждой клетки, обеспечивающими любые её функции, являются внешняя мембрана кардиомиоцита (сарколемма), система поперечных трубочек, связанных с Z-дисками, продольный саркоплазматический ретикулум и терминальные цистерны, а также митохондрии. Строение главной структуры кардиомиоцита — миофибриллы подобно строению миофибриллы скелетной поперечнополосатой мышечной ткани. Как и скелетная мышечная ткань, сердечная мышечная ткань имеет поперечную исчерченность. При большем увеличении видно, что эта исчерченность, также как и в миоцитах скелетной мышечной ткани, обусловлена упорядоченным положением актиновых нитей и миозиновых нитей, собранных в пучки в миофибриллах. Толстые (миозиновые) и тонкие (актин, тропонин и тропомиозин) белковые нити упорядочены в сократительные единицы (саркомеры, простирающиеся от одного до другого Z-диска) с поперечной исчерченностью, подобной той, что видна в скелетной мышечной ткани. Темные полосы, пересекающие миофибриллы — это соединения отдельных клеток. Их называют вставочными дисками. Они образованы мембранами соседних кардиомиоцитов, образующих сердечное мышечное волокно. Электрическое сопротивление такого соединения составляет

1/400 сопротивления сарколеммы волокна сердечной мышечной ткани. Через соединение осуществляются хорошо управляемые ионные потоки. Потенциал действия, движущийся по оси одной клетки, легко переходит через вставочный диск на соседний кардиомиоцит. Эффективное взаимодействие кардиомиоцитов через многочисленные вставочные диски явилось основанием для того, чтобы считать, что сердечная мышечная ткань образует два функциональных синцития: предсердный синцитий и желудочковый синцитий, хотя морфологическими синцитиями они не являются. Эти функциональные синцитии отделены друг от друга соединительной тканью, окружающей клапанные отверстия. Однако синцитии могут эффективно взаимодействовать друг с другом через специальную проводящую систему (атриовентрикулярный пучок).
Особенности структуры и функции кардиомиоцитов по сравнению с другими типами миоцитов показаны в таблице: виды мышечных тканей, клеток, органов: общее и различия. Общее и различия в структуре и функциях различных кардиомиоцитов показаны в таблице: кардиомиоциты: виды, характеристики.

А . Сердечная мышечная ткань.
Б . Сокращение и расслабление миофибрилл происходит в результате изменения концентрации ионов кальция (Са 2+ ) в цитозоле кардиомиоцитов. Ионы кальция входят в цитозоль через ионные каналы для кальция. Эти ионные каналы открываются при поступлении волны деполяризации, движущейся по сарколемме. Поступившие в цитозоль ионы кальция являются «триггером», вызывающим выведение из саркоплазматического ретикулума в цитозоль ещё большего количества ионов кальция и запуск цикла сокращения-расслабления кардиомиоцита. Небольшое количество ионов кальция транспортируется через сарколемму из цитозоля посредством кальций-натриевого насоса и заменяется ионами натрия (Na + ). Кальций-натриевый насос имеет меньшее значение в трансмембранных потоках ионов кальция, чем кальциевый насос.
В . Нити актина и миозина вдвигаются друг в друга. Степень перекрытия нитей актина и миозина определяет сокращение и расслабление кардиомиоцитов во время систолы и диастолы.
Г . Глобулярные части (головки) нитей миозина взаимодействуют с нитями актина и обеспечивают скольжение (вдвижение или выдвижение) нитей вдоль их главных осей и сокращение или расслабление кардиомиоцитов.

Читайте также:  История болезни геморрагический инсульт неврология
  • Bergman R.A., Afifi A.K., Heidger P.M. Section 5: Muscular Tissue Cardiac Muscle. In: Atlas of Microscopic Anatomy: A Functional Approach: Companion to Histology and Neuroanatomy: Second Edition. The Virtual Hospital. The University of Iowa.
    Сердечная мышца. В руководстве: Рональд А.Бергман, Адел К. Афифи, Пауль М. Хайдгер: «Атлас микроскопической анатомии. Функциональный подход».
    Десятки высококачественных изображений разнообразных гистологических препаратов и их описания. Обзоры.
    Доступ к данному источнику = Access to the reference.
    URL: http://www.anatomyatlases.org/MicroscopicAnatomy/MicroscopicAnatomy.shtml. quotation
  • Kimball J.W.Muscles. In: Kimball’s Biology Pages.
    Мышцы. В руководстве: «Страницы биологии д-ра Ки́мбалла»
    Тщательно разработанное и хорошо иллюстрированное учебное руководство.
    Доступ к данному источнику = Access to the reference.
    URL: http://www.ultranet.com/

    jkimball/BiologyPages/quotation

  • On-Line Biology Book: Muscular and Skeletal Systems. In: M.J. Farabee. On-Line Biology Book.
    Мышечная и скелетная система. В руководстве «Биология».
    Тщательно разработанное и хорошо иллюстрированное учебное руководство.
    Доступ к данному источнику = Access to the reference.
    URL: http://ridge.icu.ac.jp/biobk/biobooktoc.htmlquotation
  • King M.W. Muscle Biochemistry. In: Michael W. King, Ph.D. Medical Biochemistry. Terre Haute Center for Medical Education.
    Биохимия мышцы. В руководстве «Медицинская биохимия».
    Тщательно разработанное и хорошо иллюстрированное учебное руководство.
    Доступ к данному источнику = Access to the reference.
    URL: http://www.tryphonov.ru/tryphonov/serv_r.htm#0quotation
  • Bárány M., and Bárány K. (Department of Biochemistry and Molecular Biology. University of Illinois at Chicago).
    Biochemistry of Muscle Contraction. Lectures.
    Майкл и Катя Ба́ра́ни. Биохимия мышечного сокращения.
    Тщательно разработанныее и хорошо иллюстрированные лекции. Ссылки на первоисточники.
    Доступ к данному источнику = Access to the reference.
    URL: http://www.uic.edu/classes/phyb/phyb516quotation
  • Langton P. The sarcomere. In: Teaching material. The University of Bristol.
    Саркомер.
    Хорошо иллюстрированные учебные материалы.
    Доступ к данному источнику = Access to the reference.
    URL: http://www.bris.ac.uk/Depts/Physiology/ugteach/ugindex/m1_index/med1_nmj/page4.htmquotation

    «Я У Ч Е Н Ы Й И Л И . . . Н Е Д О У Ч К А ?»
    Т Е С Т В А Ш Е Г О И Н Т Е Л Л Е К Т А

    Предпосылка:
    Эффективность развития любой отрасли знаний определяется степенью соответствия методологии познания — познаваемой сущности.
    Реальность:
    Живые структуры от биохимического и субклеточного уровня, до целого организма являются вероятностными структурами. Функции вероятностных структур являются вероятностными функциями.
    Необходимое условие:
    Эффективное исследование вероятностных структур и функций должно основываться на вероятностной методологии (Трифонов Е.В., 1978. . 2015, …).
    Критерий: Степень развития морфологии, физиологии, психологии человека и медицины, объём индивидуальных и социальных знаний в этих областях определяется степенью использования вероятностной методологии.
    Актуальные знания: В соответствии с предпосылкой, реальностью, необходимым условием и критерием. .
    о ц е н и т е с а м о с т о я т е л ь н о:
    — с т е п е н ь р а з в и т и я с о в р е м е н н о й н а у к и,
    — о б ъ е м В а ш и х з н а н и й и
    — В а ш и н т е л л е к т !

    Любые реальности, как физические, так и психические, являются по своей сущности вероятностными. Формулирование этого фундаментального положения – одно из главных достижений науки 20-го века. Инструментом эффективного познания вероятностных сущностей и явлений служит вероятностная методология (Трифонов Е.В., 1978. . 2014, …). Использование вероятностной методологии позволило открыть и сформулировать важнейший для психофизиологии принцип: генеральной стратегией управления всеми психофизическими структурами и функциями является прогнозирование (Трифонов Е.В., 1978. . 2012, …). Непризнание этих фактов по незнанию – заблуждение и признак научной некомпетентности. Сознательное отвержение или замалчивание этих фактов – признак недобросовестности и откровенная ложь.

    Санкт-Петербург, Россия, 1996-2015

    Разрешается некоммерческое цитирование материалов данной энциклопедии при условии
    полного указания источника заимствования: имени автора, названия и WEB-адреcа данной энциклопедии

  • Ссылка на основную публикацию
    Семена подорожника в народной медицине
    Здравствуйте мои дорогие читатели! Крупное растение, которое очень полезно для здоровья человека. Используйте корнеплоды, листья и рассаду. Теперь поговорим о...
    Секс без презерватива вероятность забеременеть
    Зачатие ребенка - это сложный процесс, который регулируется репродуктивной функцией женщины. Работа репродуктивной системы зависит от гормонов, фазы менструального цикла,...
    Секс игрушки для уретры
    Страшный сомик кадиру Самая свирепая рыба Амазонки - это маленький сомик кандиру (Vaudellia cirrhosa). Это единственная рыбка, которая паразитирует в...
    Семечки арбуза польза и вред
    Арбузные семечки обычно отправляются вместе с корками в мусорное ведро. Но оказывается, мы выбрасываем очень ценный продукт, который мог бы...
    Adblock detector